Answer:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = 6csc(\theta) + (7x^2)/(2) + C](https://img.qammunity.org/2019/formulas/mathematics/college/b1zycozec5sma2695rxwbjjsmvm5bssmk4.png)
General Formulas and Concepts:
Calculus
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2019/formulas/mathematics/college/2wdbz1krm7xrlw21cff2iqj2n4yank84kd.png)
Explanation:
Step 1: Define
Identify
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta](https://img.qammunity.org/2019/formulas/mathematics/college/6osl02t9pf554olx6f22n5czfbyfcagy3g.png)
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = \int {7\theta} \, d\theta - \int {6csc(\theta)cot(\theta)} \, d\theta](https://img.qammunity.org/2019/formulas/mathematics/college/xu5qhrr1cpa4rx42xolvqqlq40v2ej8isb.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = 7\int {\theta} \, d\theta - 6\int {csc(\theta)cot(\theta)} \, d\theta](https://img.qammunity.org/2019/formulas/mathematics/college/rv85xi6ntpz2wr2pxvq4opke6ky1vmzsm5.png)
- [1st Integral] Reverse Power Rule:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = 7 \Big( (\theta^2)/(2) \Big) - 6\int {csc(\theta)cot(\theta)} \, d\theta](https://img.qammunity.org/2019/formulas/mathematics/college/6r80v33mwhobuhbkl17a69fnjsfx4o10cl.png)
- [Integral] Trigonometric Integration:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = 7 \Big( (\theta^2)/(2) \Big) - 6[-csc(\theta)] + C](https://img.qammunity.org/2019/formulas/mathematics/college/4faboo8jitm46ncx8b6lbksga1sa29a4u3.png)
- Simplify:
![\displaystyle \int {\big[ 7\theta - 6csc(\theta)cot(\theta) \big]} \, d\theta = 6csc(\theta) + (7x^2)/(2) + C](https://img.qammunity.org/2019/formulas/mathematics/college/b1zycozec5sma2695rxwbjjsmvm5bssmk4.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration