The value would be 829.89.
The formula we use is

,
where A is the total amount, p is the principal, r is the rate expressed as a decimal number, n is the number of times per year the interest is compounded, and t is the number of years.
We will use 800 for p; 5.25/100 = 0.0525 for r; 365 for n; and (255/365) for t (since it is not a full year):
