35.0k views
2 votes
A circle contains the ordered pairs (-1,2), (0,1), and (-2,-1). Find the equation of the circle.

1 Answer

6 votes
we know that

the general form of a circle is
x²+y²+Dx+Ey+F=0

A circle contains the ordered pairs (-1,2), (0,1), and (-2,-1)

for the point (-1,2)
x=-1
y=2
x²+y²+Dx+Ey+F=0--------> (-1)²+(2)²+D*(-1)+E*(2)+F=0---------> 5-D+2*E+F=0
D=5+2E+F---------> equation 1

for the point (0,1)
x=0
y=1
x²+y²+Dx+Ey+F=0--------> (0)²+(1)²+D*(0)+E*(1)+F=0---------> 1+E+F=0
1+E+F=0----------> equation 2

for the point (-2,-1)
x=-2
y=-1
x²+y²+Dx+Ey+F=0--------> (-2)²+(-1)²+D*(-2)+E*(-1)+F=0---------> 5-2*D-E+F=0
5-2*D-E+F=0--------> equation 3

I substitute 1 in 3
D=5+2E+F
5-2*D-E+F=0-------> 5-2*[5+2E+F]-E+F=0

5-10-4E-2F-E+F=0--------> -5-5E-F=0---------> equation 4

resolve 2 and 4
1+E+F=0
-5-5E-F=0

using a graph tool
E=-1
F=0
D=5+2E+F------> 5+2*(-1)+0------> D=3

the equation of a circle is
x²+y²+Dx+Ey+F=0--------> x²+y²+3x-y=0--------> (x²+3x)+(y²-y)=0
(x²+3x)+(y²-y)=0--------> (x+3/2)²+(y-1/2)²=(9/4)+(1/4)

(x+3/2)²+(y-1/2)²=(10/4)

the center is (-1.5,0.5)
radius r=√(10/4)

the answer is
(x+3/2)²+(y-1/2)²=(10/4)

see the attached figure
A circle contains the ordered pairs (-1,2), (0,1), and (-2,-1). Find the equation-example-1
User Magento Kid
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories