134k views
2 votes
What steps transform the graph of y=x^2 to y= -(x+3)^2+5

User Kireeti K
by
8.1k points

1 Answer

5 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)= A( Bx+ C)+ D \\\\ ~~~~y= A( Bx+ C)+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \\\\ f(x)= A sin\left( B x+ C \right)+ D \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}


\bf ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

now, with that template in mind, let's check this one


\bf y=x^2\implies y=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{+0})^2\stackrel{D}{+0} \\\\\\ y=-(x+3)^2+5\implies y=\stackrel{A}{-1}(\stackrel{B}{1}x\stackrel{C}{+3})^2\stackrel{D}{+5}

A = -1, reflection over the x-axis.

B = 1, C = +3, C/B = +3/1 = +3, horizontal shift to the left of 3 units.

D = 5, vertical shift up of 5 units.
User Mohammed Yaser
by
9.1k points

No related questions found