8.0k views
0 votes
Indefinite integral need help pleaseeeeeee

Indefinite integral need help pleaseeeeeee-example-1

1 Answer

1 vote
Integrate indefinite integral:

I=\int(dx)/(e^(2x)+3e^x+2)dx

Solution:
1. use substitution
u=e^x
=>

du=e^xdx
=>

dx=(du)/(e^x)
=>

dx=(du)/(u)
=>

I=\int(du)/(u(u^2+3u+2))du

=\int(du)/(u(u+2)(u+1))du
2. decompose into partial fractions

(1)/(u(u+2)(u+1))

=(A)/(u)+(B)/(u+2)+(C)/(u+1)
where A=1/2, B=1/2, C=-1

=(1)/(2u)+(1)/(2(u+2))-(1)/(u+1)
3. Substitute partial fractions and continue

I=\int(du)/(2u)+\int(du)/(2(u+2))-\int(du)/(u+1)

=(log(u))/(2)+(log(u+2))/(2)-log(u+1)}
4. back-substitute u=e^x

=(log(e^x))/(2)+(log(e^x+2))/(2)-log(e^x+1)}

=(x)/(2)+(log(e^x+2))/(2)-log(e^x+1)}

Note: log(x) stands for natural log, and NOT log10(x)

User Manit
by
7.6k points