104k views
2 votes
The perimeter of a rectangle is 62 m. The length is four more than two times the width. What is the length?

2 Answers

0 votes
We can translate these sentences into equations:

"The perimeter of a rectangle is 62 m"

\sf P=2l+2w

\sf 62=2l+2w

"
The length is four more than two times the width."

\sf l=2w+4

Now we can plug in what 'l' equals in the 2nd equation into the first equation:


\sf 62=2l+2w


\sf 62=2(2w+4)+2w

Distribute:


\sf 62=4w+8+2w

Combine like terms:


\sf 62=6w+8

Subtract 8 to both sides:


\sf 54=6w

Divide 6 to both sides:


\sf w=9

So this is our width, we can plug this into any of the two equations to find the length:


\sf l=2w+4


\sf l=2(9)+4

Multiply:


\sf l=18+4

Add:


\boxed{\sf l=22~m}
User Nick Muller
by
8.1k points
0 votes
--------------------------------------------------
Define length and width
--------------------------------------------------
Let x be the width
width = x
Length = 2x + 4

--------------------------------------------------
Formula
--------------------------------------------------
Perimeter = 2(length + width)

--------------------------------------------------
Find Length and width
--------------------------------------------------
62 = 2(2x + 4 + x)
62 = 2(3x + 4) ← combine like terms
62 = 6x + 8 ← remove bracket
62 - 8 = 6x ← minus 8 on both sides
6x = 54 ← swap sides
x = 54 ÷ 6 ← divide by 6 on both sides
x = 9 m

--------------------------------------------------
Find Length and Width
--------------------------------------------------
Width = x = 9 m
Length = 2x + 4 = 2(9) + 4 = 22 m

--------------------------------------------------
Answer: Length = 22m
--------------------------------------------------
User Bouki
by
7.4k points