79.6k views
3 votes
4 The ratio of corresponding dimensions of two similar solids is 3/4. The surface

area of the first solid is 96 m². Its volume is 720 m³. Find the surface area and
volume of the second solid. Round each answer to the nearest tenth, if
necessary. Show your work

5 A globe in a brass stand has a diameter of 40 in. What is the volume of the
globe to the nearest cubic inch? Show your work.

User MelnikovI
by
6.3k points

2 Answers

0 votes
Question 4:

---------------------------------------------------
Ratio of Dimension to Area
----------------------------------------------------
Dimension : Area

(3)/(4) \ : \ ((3)/(4) )^2

(3)/(4) \ : (9)/(16)

---------------------------------------------------
Find Area
----------------------------------------------------
Let x be the surface area of the second solid

(9)/(16) = (96)/(x)

9x = 96 * 16

9x = 1536

x = 1536 / 9

x =170.7 m^2 (\ nearest \ tenth )

---------------------------------------------------
Answer: 170.7 m²
----------------------------------------------------


---------------------------------------------------
Ratio of Dimension to Volume
----------------------------------------------------
Dimension : Volume

(3)/(4) \ : \ ((3)/(4) )^3

(3)/(4) \ : \ (27)/(64)

---------------------------------------------------
Find Volume
----------------------------------------------------
Let x be the surface are of the second solid

(27)/(64) = (720)/(x)

27x = 720 * 64

9x = 46080

x = 146080 / 27

x =1706.7 m^2 (nearest \ hundredth )

---------------------------------------------------
Answer: 1706.7 m³
----------------------------------------------------


Question 5
---------------------------------------------------
Find Radius
---------------------------------------------------
Radius = Diameter ÷ 2
Radius = 40 ÷ 2
Radius = 20

---------------------------------------------------
Find volume of the globe, which is a sphere
---------------------------------------------------

Volume \ of \ sphere \ = (4)/(3) \pi x^(3)


Volume \ of \ sphere \ = (4)/(3) \pi (20)^(3)


Volume \ of \ sphere \ = 33510.3 in^3 \ ( \ nearest \ hundredth )

---------------------------------------------------
Answer: 33510.3 in³
----------------------------------------------------

User Thomaus
by
6.0k points
1 vote
4.

The ratio is 3/4 for corresponding dimensions, the ratio of their surface areas is equal to the square of this ratio:


\sf ((3)/(4))^2=(S)/(96)

Simplify the exponent:


\sf (9)/(16)=(96)/(S)

Cross multiply:


\sf 9S=1536

Divide 9 to both sides:


\sf S\approx 170.7~m^2

So the surface area of the second solid is 54 square meters.

The ratio is 3/4 for corresponding dimensions, the ratio of their volumes is equal to the cube of this ratio:


\sf ((3)/(4))^3=(720)/(V)

Simplify the exponent:


\sf (27)/(64)=(720)/(V)

Cross multiply:


\sf 27V=46080

Divide 64 to both sides:


\sf V\approx 1706.7~m^3

5.

A globe is a sphere, use the formula for the volume of a sphere:


\sf V=(4)/(3)\pi r^3

The radius is half of the diameter, so the radius here is 40/2 = 20. Plug it in the formula, use 3.14 to approximate for Pi:


\sf V=(4)/(3)(3.14)(20)^3

Simplify the exponent:


\sf V=(4)/(3)(3.14)(8000)

Multiply:


\sf V\approx \boxed{\sf 33,493~in^3}