31.7k views
1 vote
HELP! Multiplying radicals. Questions on photo.

HELP! Multiplying radicals. Questions on photo.-example-1
User Vasspilka
by
7.9k points

1 Answer

3 votes
These are 10 questions and 10 answers

1)
\sqrt[3]{24} . \sqrt[3]{45}


Answer: third option 6∛5

Step-by-step explanation:

24 = 2^3 * 3

45 = 3^2 * 5

=> 24 * 45 = 2^3 * 3^3 * 5

=> (∛24).(∛45) = ∛[ (2^3).(3^3).5 ] = (2)(3)∛5 = 6∛5

2)
\sqrt[5]{4x^2} . \sqrt[5]{4x^2}


Answer: second option.

Demostration:


\sqrt[5]{4x^2} . \sqrt[5]{4x^2} = \sqrt[5]{4^2x^4} = \sqrt[5]{2^4x^4} = \sqrt[5]{16x^2}

3)
√(10) . √(10)


Answer: first option 10

Justification:

√10 . √10 = (√10)^2 = √(10^2) = √100 = 10

4)
\sqrt[4]{7} . \sqrt[4]{7} . \sqrt[4]{7} . \sqrt[4]{7}


Answer: fourth option: 7

Step-by-step explanation:


\sqrt[4]{7} . \sqrt[4]{7} . \sqrt[4]{7} . \sqrt[4]{7}= (\sqrt[4]{7^})^4= \sqrt[4]{7^4}=7 ^(4/4)=7^1=7

5)
(x √(7) -3 √(8)).(x √(7)-3 √(8))


Answer: the third option: 7x^2 - 12x√14 + 72

Solution:

Notice that it is the two factors are identical, so this is a perfect square binomial:

(x√7 - 3√8)^2 = (x√7)^2 - 2*(x√7)(3√8) + (3√8)^2 = 7x^2 - 6√(56)x + 72 =

= 7x^2 -(6)(2)x√14 + 72 = 7x^2 - 12x√14 + 72

6) √12 . √18

Answer: the fourth option 6√6

Step-by-step explanation:

√12 . √18 = √ (2 . 2 . 3 . 2 . 3 . 3) = √ [( 2^3) . (3^3)] = 2 . 3 √6 = 6√6

7)
√(y^3) . √(y^3)


Answer: first option y^3

Justification:


√(y^3) . √(y^3) =( √(y^3) )^2 =(y^3)^(2/2)=y^3

8) ∛d . ∛d . ∛d

Answer: first option: d

Step-by-step explanation:

∛d . ∛d . ∛d =
( \sqrt[3]{d}) ^3 = d{3/3}=d^1=d

9)
√(5x^8y^2) . √(10x^3) . √(12y)


Answer: second option

Step-by-step explanation:


√(5x^8y^2) . √(10x^3) . √(12y) = √((5.10.12)x^8y^2x^3y)= \sqrt{600x^(11)y^3} =


=10x^5y √(6xy)

10) (∛4) . √3

Answer: third option
\sqrt[6]{432}


Step-by-step explanation:


\sqrt[3]{4} . √(3) = \sqrt[6]{4^2} . \sqrt[6]{3^3} = \sqrt[6]{16.27} = \sqrt[6]{432}
User MikeVaughan
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories