358,021 views
37 votes
37 votes
In the following exercise, two sides and an angle are given. First determine whether the information results in no triangle, one triangle, or two triangles. Solve the resulting triangle.

a=229,b=244, and A = 37.8°

User Kolban
by
2.6k points

1 Answer

7 votes
7 votes

By the Law of Sines,


(\sin B)/(b)=(\sin A)/(a) \\ \\ \sin B=(b \sin A)/(a) \\ \\ =(244\sin 37.8^(\circ))/(229) \\ \\ B \approx 37.42^(\circ), 142.58^(\circ)

Of these, only 37.42° is a possible value of B (sum of angles of a triangle is 180°).

So, we have that:


a=229, b=244, A=37.8^(\circ), B=\arcsin \left((244\sin 37.8^(\circ))/(229) \right)

Angles of a triangle add to 180°, so:


C=180^(\circ)-A-B=142.2^(\circ)-\arcsin \left((244\sin 37.8^(\circ))/(229) \right)</p><p>

Using the Law of Sines again,


(c)/(\sin C)=(a)/(\sin A) \\ \\ c=(a \sin C)/(\sin A) \\ \\ =(244\sin \left(142^(\circ)-\arcsin \left((244 \sin 37.8^(\circ))/(229) \right) \right))/(\sin 37.8^(\circ))

So, there is one possible triangle, where:


a=229 \\ \\ b=244 \\ \\ c=(244\sin \left(142^(\circ)-\arcsin \left((244 \sin 37.8^(\circ))/(229) \right) \right))/(\sin 37.8^(\circ)) \\ \\ A=37.8^(\circ) \\ \\ B=\arcsin \left((244\sin 37.8^(\circ))/(229) \right) \\ \\ C=142.2^(\circ)-\arcsin \left((244\sin 37.8^(\circ))/(229) \right)

User Cosmin Stoian
by
2.5k points