84.6k views
5 votes
An air-gap parallel plate capacitor of capacitance c0 = 20 nf is connected to a battery with voltage v = 12 v. while the capacitor remains connected to the battery, we insert a dielectric (κ = 2.6) into the gap of the capacitor, filling one half of the volume as shown below. what is u, the energy stored in the this capacitor?

1 Answer

5 votes

Answer:

3.7 * 10
^(-5) J

Step-by-step explanation:

Thinking process:

Let the energy be calculated by the following:


U = (1)/(2)CV^(2)

where V is the voltage applied across the load.

C is the capacitance

In case of a dielectric, the capacitance is given by the following equation:


C = kC_(0)

where
C_(0) is the capacitance in vacuum. So, the energy stored becomes:


U = (1)/(2) (kC_(o))V^(2)

Then, k = 2.6 ,
C_(0) = 20 nF, and V = 12 V

Therefore, in the problem, the energy stored becomes:


U = (1)/(2) (2.6 * 20*10^(-9)) (12)^(2) \\ = 3.7 * 10^(-5) J

User Zoltish
by
5.9k points