149k views
1 vote
Given f(x)=3x^2+10x−8 and g(x)=3x^2−2x .

What is (fg)(x)

Given f(x)=3x^2+10x−8 and g(x)=3x^2−2x . What is (fg)(x)-example-1
User Phisch
by
7.8k points

2 Answers

2 votes

Answer:


(x+4)/(x) \hspace{8}where\hspace{8}x\\eq0,(2)/(3)

Explanation:

The division between functions is defined as:


((f)/(g))(x)=(f(x))/(g(x)) ,\hspace{10}g(x)\\eq0

So:


((f)/(g) )(x)=(3x^2+10x-8)/(3x^2-2x)\\ \\Factor\hspace{3}x\hspace{3}out\hspace{3}the\hspace{3}denominator\\\\((f)/(g) )(x)=(3x^2+10x-8)/(x(3x-2))\\\\Factor\hspace{3}the\hspace{3}numerator\\\\((f)/(g) )(x)=(4(3x-2)+x(3x-2))/(x(3x-2))\\\\Factor\hspace{3}3x-2\hspace{3}from\hspace{3}the\hspace{3}numerator\\\\((f)/(g) )(x)=((3x-2)(x+4))/(x(3x-2))=(x+4)/(x)

Since
g(x) \\eq0 , let's find its roots:


3x^2-2x=0\\\\Factor\\\\x(3x-2)=0\\\\Split\hspace{3}into\hspace{3}two\hspace{3}equations:\\\\(1):x=0\\(2):3x-2=0

For (2)


3x=2\rightarrow x=(2)/(3)

Therefore the roots are:


x=0,\hspace{3}x=(2)/(3)

Finally the complete answer is:


((f)/(g))(x)= (x+4)/(x) \hspace{8}where\hspace{8}x\\eq0,(2)/(3)

User Mike Strong
by
7.8k points
3 votes
the answer for this is C
User Kakamotobi
by
7.5k points