405,224 views
20 votes
20 votes
Find the lateral surface area and volume of the solid object in picture

Find the lateral surface area and volume of the solid object in picture-example-1
User Ruben Bartelink
by
2.5k points

1 Answer

9 votes
9 votes

Notice that s stands for the slant height of the pyramid, and this height is the height of each one of the lateral triangular faces.

We will need to use the next formulas


\begin{gathered} A_{\text{hex}}=\frac{3\sqrt[]{3}}{2}a^2\to\text{Area of a regular hexagon (a is one of its sides)} \\ A_{\text{tri}}=(bh)/(2)\to\text{Area of a triangle} \end{gathered}

Therefore, the surface area is


\begin{gathered} A_{\text{figure}}=A_{\text{hex}}+6\cdot A_{\text{tri}}=\frac{3\sqrt[]{3}(3)^2}{2}+6\cdot((3\cdot10.3))/(2) \\ =\frac{27\sqrt[]{3}}{2}+92.7 \\ \Rightarrow A_{\text{figure}}=\frac{27\sqrt[]{3}}{2}+92.7 \\ \Rightarrow A_{\text{figure}}\approx23.4+92.7=116.1 \\ \Rightarrow A_{\text{figure}}=116.1 \end{gathered}

Lateral Area=116.1 m^2

As for the volume, the volume of a regular pyramid is


V=\frac{A_{\text{base}}\cdot h}{3}

In our case,


V=\frac{3\sqrt[]{3}a^2}{2}\cdot(h)/(3)=\frac{\sqrt[]{3}}{2}a^2h

Therefore,


\Rightarrow V=\frac{\sqrt[]{3}}{2}(3)^2\cdot10=45\sqrt[]{3}

Volume= 77.9 m^3

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.