35.8k views
3 votes
Write the equation of a parabola, in standard form, that goes through these points:

(0, 3) (1, 4) (-1, -6)

User Sonny D
by
7.8k points

1 Answer

3 votes
so, we know the parabola runs through
\bf (\stackrel{x}{0}~,~\stackrel{y}{3}),(\stackrel{x}{1}~,~\stackrel{y}{4}),(\stackrel{x}{-1}~,~\stackrel{y}{-6})

now, since we know is a parabola, we could use the form of say y = ax² + bx + c, to find the integers a, b and c, with those points,


\bf (\stackrel{x}{0}~,~\stackrel{y}{3}),(\stackrel{x}{1}~,~\stackrel{y}{4}),(\stackrel{x}{-1}~,~\stackrel{y}{-6})\qquad \qquad \qquad y=ax^2+bx+c\\\\ -------------------------------\\\\ \begin{cases} \stackrel{y}{3}=a\stackrel{x^2}{0^2}+b\stackrel{x}{0}+c\\ \stackrel{y}{4}=a\stackrel{x^2}{1^2}+b\stackrel{x}{1}+c\\ \stackrel{y}{-6}=a\stackrel{x^2}{(-1)^2}+b\stackrel{x}{(-1)}+c \end{cases}\implies \begin{cases} 3=\boxed{c}\\\\ 4=a+b+c\\\\ -6=a-b+c \end{cases}


\bf \stackrel{second~equation~substitution}{4=a+b+\boxed{3}}\implies 1=a+b\implies 1-b=\underline{a} \\\\\\ \stackrel{third~equation~substitution}{-6=(\underline{1-b})-b+\boxed{3}}\implies -10=-2b \\\\\\ \cfrac{-10}{-2}=b\implies 5=b\\\\ -------------------------------\\\\ \textit{since we know c = 3 and b = 5, then }\stackrel{second~equation}{4=a+5+3}\implies -4=a\\\\ -------------------------------\\\\ y=-4x^2~~+5x~~+3
User Guy
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories