10.0k views
5 votes
Which function is the same as y=3cos(2(x+pi/2))-2?

Which function is the same as y=3cos(2(x+pi/2))-2?-example-1
User Microbe
by
5.8k points

2 Answers

5 votes

The Answer is B i just took the test on ingenuity.

User Lynwood
by
5.7k points
5 votes

Answer:

Option B is Correct.

Explanation:

Given:
y\,=\,3\,cos\,(2(x+(\pi)/(2)))-2

To find: Equivalent Expression.

We use Following functions:


cos\,(\pi+x)=\,-cos\,x\:,\:cos\,((\pi)/(2)+x)=\,-sin\,x\:\:and\:\:sin\,((\pi)/(2)+x)=cos\,x

First we simply the given expression,


y\,=\,3\,cos\,(2(x+(\pi)/(2)))-2


y\,=\,3\,cos\,(2x+2(\pi)/(2)))-2


y\,=\,3\,cos\,(2x+\pi)-2


y\,=\,3\,cos\,(\pi+2x)-2


y\,=\,3\,(-cos\,2x)-2 ( using above mentioned result )


y\,=\,-3\,cos\,2x-2 ............................(1)

Option A:


y\,=\,3\,sin\,(2(x+(\pi)/(4)))-2


y\,=\,3\,sin\,(2x+2(\pi)/(4)))-2


y\,=\,3\,sin\,(2x+(\pi)/(2))-2


y\,=\,3\,sin\,((\pi)/(2)+2x)-2


y\,=\,3\,cos\,2x-2 ( using above mentioned result )

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Option B:


y\,=\,-3\,sin\,(2(x+(\pi)/(4)))-2


y\,=\,-3\,sin\,(2x+2(\pi)/(4)))-2


y\,=\,-3\,sin\,(2x+(\pi)/(2))-2


y\,=\,-3\,sin\,((\pi)/(2)+2x)-2


y\,=\,-3\,cos\,2x-2 ( using above mentioned result )

Since, it is equal to (1)

Therefore, It is Correct Option.

Option C:


y\,=\,3\,cos\,(2(x+(\pi)/(4)))-2


y\,=\,3\,cos\,(2x+2(\pi)/(4)))-2


y\,=\,3\,cos\,(2x+(\pi)/(2))-2


y\,=\,3\,cos\,((\pi)/(2)+2x)-2


y\,=\,3\,(-sin\,2x)-2 ( using above mentioned result )


y\,=\,-3\,sin\,2x-2

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Option D:


y\,=\,-3\,cos\,(2(x+(\pi)/(2)))-2


y\,=\,-3\,cos\,(2x+2(\pi)/(2)))-2


y\,=\,-3\,cos\,(2x+\pi)-2


y\,=\,-3\,cos\,(\pi+2x)-2


y\,=\,-3\,(-cos\,2x)-2 ( using above mentioned result )


y\,=\,3\,cos\,2x-2

Since, it is not equal to (1)

Therefore, It is Not correct Option.

Therefore, Option B is Correct.

User Sam Berry
by
5.9k points