55.3k views
0 votes
If 3x^2 + y^2 = 7 then evaluate d^2y/dx^2 when x = 1 and y = 2. Round your answer to 2 decimal places. Use the hyphen symbol, -, for negative values.

User KamilCuk
by
7.9k points

1 Answer

5 votes
Taking
y=y(x) and differentiating both sides with respect to
x yields


(\mathrm d)/(\mathrm dx)\bigg[3x^2+y^2\bigg]=(\mathrm d)/(\mathrm dx)\bigg[7\bigg]\implies 6x+2y(\mathrm dy)/(\mathrm dx)=0

Solving for the first derivative, we have


(\mathrm dy)/(\mathrm dx)=-\frac{3x}y

Differentiating again gives


(\mathrm d)/(\mathrm dx)\bigg[6x+2y(\mathrm dy)/(\mathrm dx)\bigg]=(\mathrm d)/(\mathrm dx)\bigg[0\bigg]\implies 6+2\left((\mathrm dy)/(\mathrm dx)\right)^2+2y(\mathrm d^2y)/(\mathrm dx^2)=0

Solving for the second derivative, we have


(\mathrm d^2y)/(\mathrm dx^2)=-\frac{3+\left((\mathrm dy)/(\mathrm dx)\right)^2}y=-\frac{3+(9x^2)/(y^2)}y=-(3y^2+9x^2)/(y^3)

Now, when
x=1 and
y=2, we have


(\mathrm d^2y)/(\mathrm dx^2)\bigg|_(x=1,y=2)=-(3\cdot2^2+9\cdot1^2)/(2^3)=\frac{21}8\approx2.63
User R Reveley
by
8.1k points