262,952 views
12 votes
12 votes
Maximize:
z= 6x +12y
subject to: 4x + 5y ≤20
8x + y ≤ 20
x≥0, y 20

User Lerner Zhang
by
3.5k points

1 Answer

16 votes
16 votes

Answer:

48

Explanation:

Given:


\textsf{Maximize}: \quad z=6x+12y


\begin{aligned}&\textsf{Subject to}: \quad &4x+5y & \leq 20\\&&8x+y &\leq 20\\&&x\geq 0, y&\geq 0\end{aligned}

Graph the lines:


\textsf{Draw the line } \;\;4x+5y=20 \;\;\textsf{and shade under the line}.


\textsf{Draw the line } \;\;8x+y=20 \;\;\textsf{and shade under the line}.


\textsf{Draw the line } \;\;x=0\;\;\textsf{and shade above the line}.


\textsf{Draw the line } \;\;y=0\;\;\textsf{and shade above (to the right of) the line}.

Therefore, the feasible region is bounded by the corner points:

  • A = (0, 0)
  • B = (0, 4)
  • C = (⁵/₂, 0)
  • D = (²⁰/₉, ²⁰/₉)

Determine the value of z at the corner points by substituting the x and y values of the points into the equation for z:


\textsf{Value of $z$ at $A(0,0)$}: \quad 6(0)+12(0)=0


\textsf{Value of $z$ at $B(0,4)$}: \quad 6(0)+12(4)=48


\textsf{Value of $z$ at $C\left((5)/(2),0\right)$}: \quad 6\left((5)/(2)\right)+12(0)=15


\textsf{Value of $z$ at $D\left((20)/(9),(20)/(9)\right)$}: \quad 6\left((20)/(9)\right)+12\left((20)/(9)\right)=40

Hence, the maximum value of z is 48 at B(0, 4).

Maximize: z= 6x +12y subject to: 4x + 5y ≤20 8x + y ≤ 20 x≥0, y 20-example-1
User IAmNotARobot
by
2.5k points