400,212 views
29 votes
29 votes
Find the perimeter P of

JKLM
with vertices J(-4,2), K(1,2), L(2.-2), and M(-3,-2). Round your answer to the nearest tenth, if necessary.
P = units

User Cunners
by
3.2k points

2 Answers

18 votes
18 votes
I have given the procedure how to solve this question you have to draw the Cartesian plane and then connect the dots and measure them and then add all the units.

Refer the attachment .
Find the perimeter P of JKLM with vertices J(-4,2), K(1,2), L(2.-2), and M(-3,-2). Round-example-1
User Elysefaulkner
by
2.9k points
21 votes
21 votes

Answer: P≈18.2 units

Explanation:


J(-4,2)\ \ \ \ K(1,2)\ \ \ \ L(2,-2)\ \ \ \ M(-3,-2)\\\\\overline{JK}=√((1-(-4))^2+(2-2)^2)\\ \overline{JK}=√((1+4)^2+0^2)\\ \overline{JK}=√(5^2+0)\\\overline{JK}=√(5^2)\\\overline{JK}=5\ units\\\\\overline{KL}=√((2-1)^2+(-2-2)^2) \\\overline{KL}=√(1^2+(-4)^2) \\\overline{KL}=√(1+16)\\ \overline{KL}=√(17) \ units\\\\


\overline{LM}=√((-3-2)^2+(-2-(-2))^2)\\ \overline{LM}=√((-5)^2+(-2+2)^2)\\ \overline{LM}=√(25+0^2) \\\overline{LM}=√(25) \\\overline{LM}=5\ units\\\\\overline{JM}=√((-3-(-4))^2+(-2-2)^2)\\ \overline{JM}=√((-3+4)^2+(-4)^2)\\ \overline{JM}=√(1^2+16)\\ \overline{JM}=√(17)\ units\\\\P=5+√(17)+5+√(17) \\\\ P=10+2√(17)\\\\P\approx18.2\ units

User Niveditha Karmegam
by
2.9k points