287,584 views
34 votes
34 votes
(50 points) EXPRESS AS A POWER OF 3, Please explain your work

do a, b, and c
don’t troll or steal answers, i searched the answers up but nothing popped up :/

(50 points) EXPRESS AS A POWER OF 3, Please explain your work do a, b, and c don’t-example-1
User Negash
by
2.5k points

1 Answer

13 votes
13 votes

Answer:


\textsf{(a)} \quad 3^(-2)


\textsf{(b)} \quad 3^(-5)


\textsf{(c)} \quad 3^(9)

Explanation:

Part (a)

Given:


(1)/(9)

Rewrite 9 as 3²:


\implies (1)/(3^2)


\textsf{Apply exponent rule} \quad (1)/(a^n)=a^(-n):


\implies 3^(-2)

Part (b)

Given:


(3^(-4) \cdot 3^2)/(3^3)


\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^(b+c):


\implies (3^((-4+2)))/(3^3)


\implies (3^(-2))/(3^3)


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies 3^((-2-3))


\implies 3^(-5)

Part (c)

Given:


27^2 / 3^(-3)

Rewrite 27 as 3³:


\implies (3^3)^2 / 3^(-3)


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 3^6 / 3^(-3)


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c)


\implies 3^((6-(-3)))


\implies 3^((6+3))


\implies 3^9

User Darian Everett
by
2.2k points