14.6k views
5 votes
Match the products of complex numbers with their standard forms.

(5-2i)(4-i) (2-5i)(1-4i) (1-4i)(5-2i) (4+i)(2-5i)

2 Answers

1 vote

Answer:

1)
(5-2i)(4-i)=18-13i

2)
(2-5i)(1-4i)=-18-13i

3)
(1-4i)(5-2i)=-3-22i

4)
(4+i)(2-5i)=13-18i

Explanation:

Given : Complex numbers

1) (5-2i)(4-i)

2) (2-5i)(1-4i)

3) (1-4i)(5-2i)

4) (4+i)(2-5i)

To find : The products of complex numbers with their standard forms.

Solution :

We simply apply multiplicative property of brackets,

i.e,
(a+b)(c+d)=ac+bc+bc+bd

Note -
i^2=(√(-1))^2=-1

1) (5-2i)(4-i)


(5-2i)(4-i)=((5)(4)+(-2i)(4)+(-5)(i)+(-2i)(-i))


(5-2i)(4-i)=(20-8i-5i+2i^2)


(5-2i)(4-i)=(20-13i-2)


(5-2i)(4-i)=18-13i

2) (2-5i)(1-4i)


(2-5i)(1-4i)=((2)(1)+(-5i)(1)+(2)(-4i)+(-5i)(-4i))


(2-5i)(1-4i)=(2-5i-8i+20i^2)


(2-5i)(1-4i)=(2-13i-20)


(2-5i)(1-4i)=-18-13i

3) (1-4i)(5-2i)


(1-4i)(5-2i)=((5)(1)+(-4i)(5)+(-2i)(1)+(-2i)(-4i))


(1-4i)(5-2i)=(5-20i-2i+8i^2)


(1-4i)(5-2i)=(5-22i-8)


(1-4i)(5-2i)=-3-22i

4) (4+i)(2-5i)


(4+i)(2-5i)=((4)(2)+(i)(2)+(4)(-5i)+(i)(-5i))


(4+i)(2-5i)=(8+2i-20i-5i^2)


(4+i)(2-5i)=(8-18i+5)


(4+i)(2-5i)=13-18i

Therefore, following above are the required results.

User Jbbuckley
by
7.6k points
4 votes

( 5 - 2i ) ( 4 - i ) 18 - 13i

( 2 - 5i ) ( 1 - 4i ) -18 - 13i

( 1 - 4i ) ( 5 - 2i ) -3 - 22i

( 4 + i ) ( 2 - 5i ) 13 - 18i

User Parag Chaure
by
7.3k points