Answer:
∠O = 84°
Explanation:
In ΔOPQ,
OP ≅ OQ
So, ΔOPQ is an isosceles triangle.
∠P = ∠Q {Angels opposite to equal sides are equal}
∠P = 48°
In ΔOPQ,
∠P + ∠Q + ∠O = 180° {Angle sum property of triangle}
48 + 48 + ∠O = 180
96 + ∠O = 180
∠O = 180 - 96
∠O = 84°