Triangles NPM and ABC are similar by SAS, establishing that angle ABC corresponds to angle NPM. Thus, <ABC = <MNP.
In triangles NPM and ABC, the given information suggests that these triangles are similar by the Side-Angle-Side (SAS) criterion. Specifically, MP = AC, AB = NM, and BC = PN, along with the corresponding equal angles A = M, B = N, and C = P.
The Angle-Angle Similarity Postulate asserts that if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar. Therefore, triangles NPM and ABC are similar.
The corresponding angles in similar triangles are equal. Hence, angle ABC is equal to angle NPM. Therefore, the correct answer is:
<MNP
This is because angle ABC in triangle ABC corresponds to angle NPM in triangle NPM.