QUESTION 1
We want to solve,
![(1)/((x-4))+(x)/((x-2))=(2)/(x^(2)-6x+8)](https://img.qammunity.org/2019/formulas/mathematics/high-school/i37c4295l5okco2wilnn9iplg4gqa1p3.png)
We factor the denominator of the fraction on the right hand side to get,
![(1)/((x-4))+(x)/((x-2))=(2)/(x^(2)-4x - 2x+8).](https://img.qammunity.org/2019/formulas/mathematics/high-school/qwrnq54nrqsa067hwse8hc7545jrn04sw2.png)
This implies
![(1)/((x-4))+(x)/((x-2))=(2)/(x(x-4) - 2(x - 4)).](https://img.qammunity.org/2019/formulas/mathematics/high-school/tiuykuyvglh5cx19roz2nkuyo0wz5l2j1w.png)
![(1)/((x-4))+(x)/((x-2))=(2)/((x-4)(x - 2))](https://img.qammunity.org/2019/formulas/mathematics/high-school/c9vpk7fnmi4529icc8oa1i08p1kivyo775.png)
We multiply through by LCM of
![(x-4)(x - 2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vwrr6qb3w72cgeb1tlvqrgasf1adhtd0fv.png)
![(x - 2) + x(x-4) = 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/hvosvescdth1pzmjkmfeem5rln994k0rjw.png)
We expand to get,
![x - 2 + {x}^(2) - 4x= 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/t63287qiueg2kx2g5ygplof6yxjg4jkd5r.png)
We group like terms and equate everything to zero,
![{x}^(2) + x - 4x - 2 - 2 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/be1j6wvsjg4b6jgic691oztcxnly2zr2nq.png)
We split the middle term,
![{x}^(2) + - 3x - 4 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/jhy55e21l5gdr1myt9nub1ocdf8hnwk9nf.png)
We factor to get,
![{x}^(2) + x - 4x- 4 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/vzei3qgefk2wdzn4x41f81109uet91jyww.png)
![x(x + 1) - 4(x + 1) = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/ndu6x2dx15a1fkfps41n2f17crd1xzcw4a.png)
![(x + 1)(x - 4) = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/wseu5efn8ykwm9tgxep1p5iup8s32i9ele.png)
![x + 1 = 0 \: or \: x - 4 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/qtctf28m4sf9thve5qtrl5tyaekp9h85gj.png)
![x = - 1 \: or \: x = 4](https://img.qammunity.org/2019/formulas/mathematics/high-school/3ls8h7owfbsbdc2ovw24fayxmtbeuxit61.png)
But
![x = 4](https://img.qammunity.org/2019/formulas/mathematics/high-school/atvjgwdx0v4qkei0dce4beeina444xt06p.png)
is not in the domain of the given equation.
It is an extraneous solution.
![\therefore \: x = - 1](https://img.qammunity.org/2019/formulas/mathematics/high-school/jh2flws7kt8nj40podqaxlhly8zmvq5h3k.png)
is the only solution.
QUESTION 2
![√(x+11) -x=-1](https://img.qammunity.org/2019/formulas/mathematics/high-school/z5pyas8x4i8cdvs3o7ygw0esarmk38ti.png)
We add x to both sides,
![√(x+11) =x-1](https://img.qammunity.org/2019/formulas/mathematics/high-school/p986slmfa7og79wnzqz67x54qgrsqma4ne.png)
We square both sides,
![x + 11 = (x - 1)^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pwm66sl9yaamzlfprkqp43eu9f2a0kvnwc.png)
We expand to get,
![x + 11 = {x}^(2) - 2x + 1](https://img.qammunity.org/2019/formulas/mathematics/high-school/tkp3fcy3cza156hali6cct0e5mddlgm8rq.png)
This implies,
![{x}^(2) - 3x - 10 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/cxz21wu92gokdrt528yo0az9cgdsx7pu3u.png)
We solve this quadratic equation by factorization,
![{x}^(2) - 5x + 2x - 10 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/cx7fv4yr22ufjpjqgvea9jd12d5z7jvzeu.png)
![x(x - 5) + 2(x - 5) = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/6t395yhcis2tarwzj25x1hsinbpuobumhr.png)
![(x + 2)(x - 5) = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/o78flu8cmezv5r9pcmem667yu4bl8eaeje.png)
![x + 2 = 0 \: or \: x - 5 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/6rbkyjot7gv4r2bq2fywlnb6navbghz7lv.png)
![x = - 2 \: or \: x = 5](https://img.qammunity.org/2019/formulas/mathematics/high-school/w8zyothmnz38wav5e2z7v6fo1qi72sevy2.png)
But
![x = - 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/qbcss3vudfxv0j0m9gvki543a1ezzudwnk.png)
is an extraneous solution
![\therefore \: x = 5](https://img.qammunity.org/2019/formulas/mathematics/high-school/re04k8ggpafohh2yoo9fn66zmo8ffu4s8e.png)