206k views
2 votes
Which expression is equivalent

Which expression is equivalent-example-1

2 Answers

5 votes

Answer:

Correct choice is B

Explanation:

Consider expression


((3m^(-1)n^2)^4)/((2m^(-2)n)^3).

1. Simplify numerator:


(3m^(-1)n^2)^4=3^4\cdot (m^(-1))^4\cdot (n^2)^4=81m^(-4)n^8.

2. Simplify denominator:


(2m^(-2)n)^3=2^3\cdot (m^(-2))^3\cdot n^3=8m^(-6)n^3.

Then,


((3m^(-1)n^2)^4)/((2m^(-2)n)^3)=(81m^(-4)n^8)/(8m^(-6)n^3)=(81)/(8)m^(-4-(-6))n^(8-3)=(81)/(8)m^2n^5.

User Thiago Cardoso
by
8.5k points
4 votes

Answer:

Option B is correct.


(81m^2n^5)/(8) is equivalent to
((3m^(-1)n^2)^4)/((2m^(-2)n)^3)

Explanation:

Given expression:
((3m^(-1)n^2)^4)/((2m^(-2)n)^3)

Using exponents power:


  • (ab)^n = a^nb^n

  • (a^n)^m = a^(nm)

  • a^m \cdot a^n = a^(m+n)

Given:
((3m^(-1)n^2)^4)/((2m^(-2)n)^3)

Apply exponent power :


(3^4 (m^(-1))^4(n^2)^4)/(2^3(m^(-2))^3 n^3)


(81 m^(-4)n^8)/(8m^(-6)n^3) = (81 m^(-4) \cdot m^6 n^8 \cdot n^(-3))/(8)


(81 m^(-4+6) n^(8-3))/(8) = (81 m^2 n^5)/(8) = (81m^2 n^5)/(8)

Therefore, the expression which is equivalent to
((3m^(-1)n^2)^4)/((2m^(-2)n)^3) is,
(81m^2 n^5)/(8)

User L Martin
by
8.2k points