Answer:
13.863 years
Explanation:
Initial deposit is $2,000.
The rate of interest is 5% compounded continuously.
The account balance of the savings account after t years by an exponential function:
A(t) = $2,000 ∙ e^0.05t.
It says to find out the time when it takes for the initial deposit to double, i.e. A(t) = $4,000
Mathematically, we can set them equal and solve for t as follows:-
A(t) = $2,000 ∙ e^0.05t = $4,000.
e^(0.05t) = 4000/2000 = 2
0.05t Ln(e) = Ln(2)
t/20 = Ln(2)
t = 20 * Ln(2) = 13.86294361
So, it takes 13.863 years for the initial deposit to double.