21.1k views
2 votes
Receive 99 points if answered correctly with steps!

Point E is the midpoint of side BC of parallelogram ABCD (labeled counterclockwise) and AE ∩ BD =F. Find the area of ABCD if the area of △BEF is 3 cm2.

2 Answers

6 votes

36 cm²

Explanation:

1. ΔBEF & ΔADF are similar; 2. the height of ΔABE is 3height of ΔBEF; 3. area of ΔABE is 3 area of ΔBEF; 4. area of ΔABE= area of ΔACE; 5. area of ΔABC = 2 area of ΔACE; 6. Area of ABCD = 2 area of ΔABC = 12 area of BEF.

User Deepakchethan
by
7.3k points
3 votes

Answer:

36 cm²

Explanation:

1. ΔBEF & ΔADF are similar; 2. the height of ΔABE is 3height of ΔBEF; 3. area of ΔABE is 3 area of ΔBEF; 4. area of ΔABE= area of ΔACE; 5. area of ΔABC = 2 area of ΔACE; 6. Area of ABCD = 2 area of ΔABC = 12 area of BEF.

Receive 99 points if answered correctly with steps! Point E is the midpoint of side-example-1
User Jordan Ell
by
7.7k points