37.0k views
5 votes
Find the point, M, that divides segment AB into a ratio of 4:7 if A is at (-33, 0) and B is at (0, 44)

1 Answer

5 votes


\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ A(-33,0)\qquad B(0,44)\qquad \qquad \stackrel{\textit{ratio from A to B}}{4:7} \\\\\\ \cfrac{A\underline{M}}{\underline{M} B} = \cfrac{4}{7}\implies \cfrac{A}{B} = \cfrac{4}{7}\implies 7A=4B\implies 7(-33,0)=4(0,44)\\\\[-0.35em] ~\dotfill\\\\ M=\left(\frac{\textit{sum of


\bf M=\left(\cfrac{(7\cdot -33)+(4\cdot 0)}{4+7}\quad ,\quad \cfrac{(7\cdot 0)+(4\cdot 44)}{4+7}\right) \\\\\\ M=\left(\cfrac{(-231)+(0)}{11}\quad ,\quad \cfrac{(0)+(176)}{11}\right)\\\\\\ M=\left( -\cfrac{231}{11}~,~\cfrac{176}{11} \right)\implies M=(-21,16)

User Pantaloons
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories