Answer:
The sum of first 4n terms is -10n.
Explanation:
The formula for sum of n terms of an AP is
![S_n=(n)/(2)[2a+(n-1)d]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zlxdeh4y1z86kc1buiv5zlr8j0r6ep4dw7.png)
It is given that the sum of the first n terms of an A. P. is 2n and the sum of the first 2n terms is n.
![(n)/(2)[2a+(n-1)d]=2n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/39k75lg6xezxujog6d9dc3rtene3qad6nd.png)
..... (1)
![(2n)/(2)[2a+(2n-1)d]=n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/66r4lms8tbvoml1uu7tloy2bziq5hg2a1r.png)
..... (2)
Solve equation (1) and (2) by elimination method.


The sum of first 4n terms is
![S_(4n)=(4n)/(2)[2a+(4n-1)d]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8msd68epxin8oe8k3i01fokmvczlztx6ru.png)
![S_(4n)=2n[2a+(4n-1)d]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hycchkfq02z0irkm67ukv1h1e249yji0y5.png)
Put the value of a and d.
![S_(4n)=2n[2((1)/(2)(7-(3)/(n)))+(4n-1)(-(3)/(n))]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nyug7v6wo1xfdiibmcmw3d36bhlm4fvnsq.png)
![S_(4n)=2n[7-(3)/(n)-12+(3)/(n)]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/79guwzu99wsc9zk92teshpldx74opf3zsp.png)
![S_(4n)=2n[-5]](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1vd7oj0u83xw64y0qtg71s3a45sinjij7e.png)

Therefore the sum of 4n terms is -10n.