1,487 views
5 votes
5 votes
How to find derivative of this
x√(4-x)

User Matt Terski
by
2.9k points

2 Answers

25 votes
25 votes

We can use the product rule

G(x)=f(x)*h(x)

G'(x)=f'(x)h(x) +f(x)h'(x)


=1√(4-x) + x(1)/(2√(4-x) ) *-1\\=√(4-x) +(-x)/(2√(4-x) )

I hope this helps

User Minion
by
2.3k points
8 votes
8 votes

Answer:


\frac{\text{d}y}{\text{d}x} = (-3x+8)/(2√(4-x))

Explanation:


\boxed{\begin{minipage}{5 cm}\underline{Product Rule for Differentiation}\\\\If $y=uv$ then:\\\\$\frac{\text{d}y}{\text{d}x}=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}$\\\end{minipage}}

Given equation:


y=x√(4-x)

Identify u and v:


\textsf{Let $u=x$}


\textsf{Let $v=√(4-x)=(4-x)^{(1)/(2)}$}

Differentiate u and v with respect to x.

Differentiate u:


u=x \implies \frac{\text{d}u}{\text{d}x}=1

Differentiate v using the chain rule:


\begin{aligned}v=(4-x)^{(1)/(2)} \implies \frac{\text{d}v}{\text{d}x} &=(1)/(2)(4-x)^{((1)/(2)-1)} \cdot -1 \\\\ & =-(1)/(2)(4-x)^{-(1)/(2)}\\\\&=-(1)/(2√(4-x))\end{aligned}

Put everything into the product rule formula:


\begin{aligned}\implies \frac{\text{d}y}{\text{d}x} & =u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}\\\\& = x \cdot \left(-(1)/(2√(4-x))\right)+√(4-x) \cdot 1\\\\& = -(x)/(2√(4-x))+√(4-x)\\\\& = -(x)/(2√(4-x))+(2√(4-x)√(4-x))/(2√(4-x))\\\\& = -(x)/(2√(4-x))+(2(4-x))/(2√(4-x))\\\\& = (-x+8-2x)/(2√(4-x))\\\\& = (-3x+8)/(2√(4-x))\end{aligned}

Differentiation Rules


\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule}\\\\If $y=f(u)$ and $u=g(x)$ then:\\\\$\frac{\text{d}y}{\text{d}x}=\frac{\text{d}y}{\text{d}u}*\frac{\text{d}u}{\text{d}x}$\\\end{minipage}}


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\frac{\text{d}y}{\text{d}x}=nx^(n-1)$\\\end{minipage}}


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $ax$}\\\\If $y=ax$, then $\frac{\text{d}y}{\text{d}x}=a$\\\end{minipage}}

User Jpsasi
by
3.1k points