211k views
1 vote
Find midsegment (EG) ̅ that is parallel to side (BC) ̅. Show all work to receive credit.

Find midsegment (EG) ̅ that is parallel to side (BC) ̅. Show all work to receive credit-example-1
User Saagarjha
by
5.9k points

1 Answer

6 votes

Answer:

Part 1)
E(-2,-1),
G(1,0)

Part 2) slope EG is equal to slope BC (EG is parallel to BC)

Part 3)
EG=(1/2)BC

Explanation:

we have


B(-3,1), C(3,3),D(-1,-3)

Step 1

Find the midsegment (EG) ̅ that is parallel to side (BC)

Find the x-coordinate of point E


Ex=(Bx+Dx)/(2)

substitute


Ex=(-3-1)/(2)=-2

Find the y-coordinate of point E


Ey=(By+Dy)/(2)

substitute


Ey=(1-3)/(2)=-1

the coordinates of point E are
E(-2,-1)

Find the x-coordinate of point G


Gx=(Cx+Dx)/(2)

substitute


Gx=(3-1)/(2)=1

Find the y-coordinate of point G


Gy=(Cy+Dy)/(2)

substitute


Gy=(3-3)/(2)=0

the coordinates of point G are
G(1,0)

Step 2

Verifying EG is parallel to BC

we know that

If two lines are parallel, then their slopes are the same

The formula to calculate the slope between two points is equal to


m=(y2-y1)/(x2-x1)

Find the slope EG

we have


E(-2,-1),G(1,0)

Substitute the values


mEG=(0+1)/(1+2)


mEG=(1)/(3)

Find the slope BC

we have


B(-3,1), C(3,3)

Substitute the values


mBC=(3-1)/(3+3)


mBC=(2)/(6)=(1)/(3)

therefore


mEG=mBC -------> EG is parallel to BC

Step 3

Verifying
EG=(1/2)BC

we know that

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Find the distance EG


E(-2,-1),G(1,0)

Substitute the values


dEG=\sqrt{(0+1)^(2)+(1+2)^(2)}


dEG=\sqrt{(1)^(2)+(3)^(2)}


dEG=√(10)\ units

Find the distance BC


B(-3,1), C(3,3)

Substitute the values


dBC=\sqrt{(3-1)^(2)+(3+3)^(2)}


dBC=\sqrt{(2)^(2)+(6)^(2)}


dBC=√(40)=2√(10)\ units

Verifying


EG=(1/2)BC

substitute the values


√(10)=(1/2)2√(10)


√(10)=√(10) -------> is true

therefore


EG=(1/2)BC

User Degr
by
7.0k points