50.0k views
1 vote
What is the recursive formula for this geometric sequence?–2, –16, –128, –1024, ...

2 Answers

2 votes

Answer:

bn=-2*8^n-1

Step-by-step expla

User Lovable
by
5.3k points
3 votes

Answer:


b_n=-2\cdot 8^(n-1)

Explanation:

Denote first four terms of the geometrc sequence as


b_1=-2,\\ \\b_2=-16,\\ \\b_3=-128,\\ \\b_4=-1024.

Note that


b_2=b_1\cdot q\Rightarrow -16=-2\cdot 8;\\ \\b_3=b_2\cdot q\Rightarrow -128=-16\cdot 8;\\ \\b_4=b_3\cdot q\Rightarrow -1024=-128\cdot 8.

Then the common ratio is


q=8.

Therefore, the recursive formula for the geometric sequence is


b_n=b_1\cdot q^(n-1)\Roghtarrow b_n=-2\cdot 8^(n-1).


User Daniel Kereama
by
6.1k points