130k views
5 votes
Select the angle that correctly completes the law of cosines for this triangle. 7 2 + 252 – 2(7)(25)cos ___ = 242 A. 180° B. 90° C. 74° D. 16°

2 Answers

1 vote

Answer:

74

Explanation:


User Romana
by
7.3k points
7 votes

Answer:

Option C is correct

The angle A =
74^(\circ)

Explanation:

Given:
7^2+25^2-2(7)(25)\cos\theta = 24^2

We have to find the angle
\theta.

Using Cosine Law:
b^2+c^2-2ab\cos A = a^2

Now, simplify:
7^2+25^2-2(7)(25)\cos\theta = 24^2


49+625-350 \cos\theta = 576


674-350 \cos\theta = 576 or


-350 \cos\theta = 576-674


-350 \cos\theta = -98


\cos \theta = (98)/(350)

Simplify:


\cos \theta =0.28


\theta = \cos^(-1)(0.28)

Simplify:


\theta \approx 74^(\circ)

Therefore, the angle that completes the law of cosine is: A =
74^(\circ)




User Cathal Comerford
by
6.7k points