178k views
2 votes
Solve the system using matrices. Gaussian elimination with back-substitution or Gauss-Jordan elimination.

X + 5y= 0
X + 6y + z = 1
2x - y - z= -21

The solution set is _,_,_ si

Solve the system using matrices. Gaussian elimination with back-substitution or Gauss-example-1
User Deha
by
8.5k points

1 Answer

3 votes

In augmented matrix form, the system is


\begin{bmatrix}1&5&0&0\\1&6&1&1\\2&-1&-1&-21\end{bmatrix}

Subtract row 1 from row 2, and subtract 2 times row 1 from row 3:


\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&-11&-1&-21\end{bmatrix}

Add 11 times row 1 to row 3:


\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&0&10&-10\end{bmatrix}

Divide through row 3 by 10:


\begin{bmatrix}1&5&0&0\\0&1&1&1\\0&0&1&-1\end{bmatrix}

Row 3 says
z=-1. Substituting into row 2, we get
y+z=1\implies y=2. Substituting both into row 1, we get
x+5y=0\implies x=-10. So the solution is the single ordered triplet (-10, 2, -1).

User Tim Kranen
by
8.1k points