118k views
0 votes
Find the value of each expression using the given information.

Cotθ and sinθ; cosθ= -1/5, tanθ<0

User Skibulk
by
7.7k points

1 Answer

3 votes

Recall that
\cos^2\theta+\sin^2\theta=1. So


\sin\theta=\pm√(1-\cos^2\theta)

Given that both
\cos\theta<0 and
\tan\theta<0, and knowing that
\tan\theta=(\sin\theta)/(\cos\theta), it follows that we should expect
\sin\theta>0, so we take the positive root above.

Now


\sin\theta=√(1-\left(-\frac15\right)^2)=\frac{2\sqrt6}5

Then


\cot\theta=(\cos\theta)/(\sin\theta)=\frac{-\frac15}{\frac{2\sqrt6}5}=-\frac1{2\sqrt6}

User Mibou
by
6.8k points