87.8k views
0 votes
PLEASE HELP

Solve −3x2 − 4x − 4 = 0.


x equals quantity of 2 plus or minus 4i square root of 2 all over 3

x equals quantity of 2 plus or minus 2i square root of 2 all over 3

x equals quantity of negative 2 plus or minus 2i square root of 2 all over 3

x equals quantity of negative 2 plus or minus 4i square root of 2 all over 3

User Bob Jordan
by
8.0k points

2 Answers

4 votes

Answer:

x equals quantity of negative
2 plus or minus
2i square root of
2 all over
3

Step-by-step explanation:

we have


-3x^(2) -4x-4=0

Rewrite (Multiply by
-1 both sides)


3x^(2)+4x+4=0

The formula to solve a quadratic equation of the form
ax^(2) +bx+c=0 is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

in this problem we have


3x^(2)+4x+4=0

so


a=3\\b=4\\c=4

substitute


x=\frac{-4(+/-)\sqrt{4^(2)-4(3)(4)}} {2(3)}



x=\frac{-4(+/-)√(-32)} {6}

remember that


i=√(-1)


x=\frac{-4(+/-)4i√(2)} {6}

Simplify


x=\frac{-2(+/-)2i√(2)} {3}


x1=\frac{-2(+)2i√(2)} {3}


x2=\frac{-2(-)2i√(2)} {3}



User Xedni
by
7.9k points
6 votes

Answer: The correct solution is option third.

Step-by-step explanation:

The given equation is,


-3x^2-4x-4=0

The quadratic formula to find the value of x for the equation
ax^2+bx+c=0 is,


x=(-b\pm √(b^2-4ac))/(2a)

The values are,


a=-3,b=-4,c=-4


x=(-(-4)\pm √((-4)^2-4(-3)(-4)))/(2(-3))


x=(4\pm √(16-48))/(-6)


x=(4\pm √(-32))/(-6)

Since
√(-1)=i,


x=(4\pm 4i√(2))/(-6)


x=(2(2\pm 2i√(2)))/(-6)


x=(2\pm 2i√(2))/(-3)


x=(-2\pm 2i√(2))/(3)

Therefore third option is correct.

User Dmazzoni
by
7.7k points