26.6k views
20 votes
Domain and Range for the function f(x)=5IXI is

User Yiou
by
4.5k points

1 Answer

8 votes

Answer:

The domain of the function f(x) is:


\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

The range of the function f(x) is:


\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&amp;\:[0,\:\infty \:)\end{bmatrix}

Explanation:

Given the function


f\left(x\right)=5\left|x\right|

Determining the domain:

We know that the domain of the function is the set of input or arguments for which the function is real and defined.

In other words,

  • Domain refers to all the possible sets of input values on the x-axis.

It is clear that the function has undefined points nor domain constraints.

Thus, the domain of the function f(x) is:


\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Determining the range:

We also know that range is the set of values of the dependent variable for which a function is defined.

In other words,

  • Range refers to all the possible sets of output values on the y-axis.

We know that the range of an Absolute function is of the form


c|ax+b|+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k


k=0

so

Thus, the range of the function f(x) is:


\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&amp;\:[0,\:\infty \:)\end{bmatrix}

User Malak
by
3.9k points