From given graph we see that points forms a parabolic shape that means we can use quadratic model to find the equation whose formula is given by:
![y=a(x-h)^2+k](https://img.qammunity.org/2019/formulas/mathematics/college/tbh7747l327y3m70wjz077h6ij0n8qkom0.png)
where (h,k) represents vertex.
From graph we see that vertex is (3,49).
Hence h=3 and k=49
Plug these values into above formula
we get:
![y=a(x-3)^2+49](https://img.qammunity.org/2019/formulas/mathematics/college/9m3vc0zxmrdbe3g6z5yvz5ez1dw9868bee.png)
Now we need to find the value of a, so we can plug any point say (5,45) then we get:
![45=a(5-3)^2+49](https://img.qammunity.org/2019/formulas/mathematics/college/uk0e78ihncvonf1nc4pmqrpj3vwfe9ba6k.png)
![45=a(2)^2+49](https://img.qammunity.org/2019/formulas/mathematics/college/osb4a33545bkunobi98evfdnm39e3pex74.png)
![45=4a+49](https://img.qammunity.org/2019/formulas/mathematics/college/9jyc2ixr730p9nh8bcwrsdjnxhjv5dtmou.png)
![45-49=4a](https://img.qammunity.org/2019/formulas/mathematics/college/rflo9udbq7dy8dgefmyyssz7dv4c766w0s.png)
![-4=4a](https://img.qammunity.org/2019/formulas/mathematics/college/fvzvcqkbnsr3xxbc4jj9d2zl61d77z78wm.png)
![-1=a](https://img.qammunity.org/2019/formulas/mathematics/college/2b1mr8qesavnsn6jyqfois082m4sktxofr.png)
Plug value of a, h and k into above formula, we get:
![y=-1(x-3)^2+49](https://img.qammunity.org/2019/formulas/mathematics/college/na6pgpejer9jmia7wlxykgb59jr26w1vyz.png)
![y=-1(x^2-6x+9)+49](https://img.qammunity.org/2019/formulas/mathematics/college/akqeazgydfo7oju9wid3utpvdntftdzuia.png)
![y=-x^2+6x-9+49](https://img.qammunity.org/2019/formulas/mathematics/college/otk0vc6z7jfst2xn4ytfjv7ssku473x0k1.png)
![y=-x^2+6x+40](https://img.qammunity.org/2019/formulas/mathematics/college/woeit8ksq4qc9e0txao4cumw2wepdoqsl4.png)
which best matches with first choice
Hence final answer is
![R(x)=-x^2+6x+40](https://img.qammunity.org/2019/formulas/mathematics/college/ngugx0vltisnk1c0zj8lh4htuvjlpk9x7n.png)