Answer:
![\displaystyle y = x^{-(2)/(3)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xmmqml8il3lbfam8atf4dx54b4f5rv9akp.png)
Explanation:
Logarithms
Some properties of logarithms will be useful to solve this problem:
1.
![\log(pq)=\log p+\log q](https://img.qammunity.org/2022/formulas/mathematics/high-school/gf7ahb9pdzsvz8y3cgibmgsvg4aptxav51.png)
2.
![\displaystyle \log_pq=(1)/(\log_qp)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lgxjm6vhqi1gx7q9epgnfcc4arqrulevj0.png)
3.
![\displaystyle \log p^q=q\log p](https://img.qammunity.org/2022/formulas/mathematics/high-school/a3tepwo2d6e62c66zght7b9m1hgvuyx323.png)
We are given the equation:
![\displaystyle \log_(2)(x) = (3)/( \log_(xy)(2) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/ulx6r7u76kj6zx0vapfyhlpmwezlwm0uty.png)
Applying the second property:
![\displaystyle \log_(xy)(2)=(1)/( \log_(2)(xy))](https://img.qammunity.org/2022/formulas/mathematics/high-school/w5xfd5dmfhipx48jw62u5beb7mx1qzsrhq.png)
Substituting:
![\displaystyle \log_(2)(x) = 3\log_(2)(xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v529w1toihahiuv1rfmhsfqbpnr8tetr3g.png)
Applying the first property:
![\displaystyle \log_(2)(x) = 3(\log_(2)(x)+\log_(2)(y))](https://img.qammunity.org/2022/formulas/mathematics/high-school/3i14mg3janlazk96soc4td89fg30hzpdum.png)
Operating:
![\displaystyle \log_(2)(x) = 3\log_(2)(x)+3\log_(2)(y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gqrzlkjftl9ttna9u9gznubwnwg6srtznf.png)
Rearranging:
![\displaystyle \log_(2)(x) - 3\log_(2)(x)=3\log_(2)(y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xyni8skl3pmgy4oenqkvsuqw5w39onc9ug.png)
Simplifying:
![\displaystyle -2\log_(2)(x) =3\log_(2)(y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4o8x0705jvqymo8rpzqxfx7v407hxs118o.png)
Dividing by 3:
![\displaystyle \log_(2)(y)=(-2\log_(2)(x))/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/20ba1x02q94puj40ruxrtn580wa0uo0hue.png)
Applying the third property:
![\displaystyle \log_(2)(y)=\log_(2)\left(x^{-(2)/(3)}\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4yxz6x81xq94233kg8js86z6rhov1df77b.png)
Applying inverse logs:
![\boxed{y = x^{-(2)/(3)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zzecj5jmtu53ja88aq74k60spkex7lxljn.png)