Answer:
x≈4
Explanation:
We are given that
![2^(x) * 3^(x)=1296](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jszmf0dvtr9fqmq201lxyhd4vr8vcs8hd0.png)
And we are asked to solve it for x
In order to do that we will use the properties of logarithm
Taking log on both hand sides
----------------(A)
We know that
![\log (a* b)=\log a + \log b](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4psfdwmcds8gr9or6ndlpsvdd31u0frt7z.png)
Hence applying this law in (A)
![\log(2^(x) * 3^(x))=\log 2^(x) + \log 3^(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/5sbxy6er73zspvyp9otuttmp8z3u72ejcm.png)
--------------(B)
Another property of logarithm says
![\log a^(m) = m\log a](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ozztjgrpgjcq8uzousfltfugq5y9k8dxe8.png)
Applying this law in (B)
![x\log 2 + x\log 3 = \log 1296](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ifk277kpn3wilq6y8qgrpvmjtla9hkvf6j.png)
taking x as GCF
![x(\log 2 + \log 3)=\log 1296](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gx2fj9lqhww83zobe2bg9ysma8pi85ridt.png)
![x \log (2* 3)=\log 1296](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4wbkq9wbpy8mvd6ifrota8hukfxrzim3lp.png)
![x \log 6= \log 1296](https://img.qammunity.org/2019/formulas/mathematics/middle-school/oltel9tvjikqa70wxz2niwn1yqbkmq0idm.png)
Dividing both sides by \log 6[/tex]
![x=(\log 1296)/(\log 6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xesd2ydbb4lqmkxqxhlhj2kewizmejwggp.png)
using calculator
log 1296 = 3.1126
log 6 = 0.7781
![x=(3.1126)/(0.7781)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8l9agmhxyhr3ev7lkssdg5o1f8snrcv5f2.png)
x≈4