1.
The parallel lines have the same a slope.
We have:
![y=-(3)/(2)x+4](https://img.qammunity.org/2019/formulas/mathematics/middle-school/exfjqgj03cx9f5slq0j5eoeyey3euvc1x5.png)
Therefore, the searched line has the equation:
![y=-(3)/(2)x+b](https://img.qammunity.org/2019/formulas/mathematics/middle-school/br90vak8hrnmi7fbbp9jil8binem6iq7x1.png)
We know, the line passes through point (4,0). Substitute the coordinates of the point to the equation of the line:
![0=-(3)/(2)(4)+b\\\\0=-(3)(2)+b\\\\0=-6+b\qquad|+6\\\\6=b\to b=6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/go5dyvc64e47gamowd7jjnni4aje36mxaj.png)
Answer:
![y=-(3)/(2)x+6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7ok21848kl5u6b83d1m1873chgwtxxydtu.png)
2.
Let
and
![l:y=m_2x+b_2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gje79cpg79ms8ecq9ed7ukvr18tn9qcokf.png)
The line l is perpendicular to the line k if and only if
![m_1m_2=-1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/spt0f4lwp6bmlnzmzkn6vil5q65vdqax5y.png)
We have
![k:y=-(1)/(3)x-1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jhd1qvaqa8minknvuqu622xw806bequjj8.png)
![l:y=mx+b\\\\l\ \perp\ k\iff-(1)/(3)m=-1\qquad|\cdot(-3)\\\\m=3](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ibeq47fmcebfejrnurruuu5gg6ayy7rbjl.png)
The searched line has the equation:
![y=3x+b](https://img.qammunity.org/2019/formulas/mathematics/middle-school/id6q5e0dyvr3nxozslofr3tezreeuii0tr.png)
We know, the line passes through point (1,5). Substitute the coordinates of the point to the equation of the line:
![5=3(1)+b\\\\5=3+b\qquad|-3\\\\2=b\to b=2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6zvy8c4j0f2aqseah3bk2jfoirdcvkpvuw.png)
Answer:
![y=3x+2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/n1rf46uv7s5af9lzgjhyq9xhfgwoxfn6ni.png)