118,587 views
39 votes
39 votes
Find the value of y. (7x-7) 63 (3x + 45) (-6)​

Find the value of y. (7x-7) 63 (3x + 45) (-6)​-example-1
User Ranga Vure
by
3.0k points

2 Answers

23 votes
23 votes

Answer:

b

Explanation:

just did the test like 20 mins ago good look

User Totten
by
2.2k points
25 votes
25 votes

The value of y is
\( -(33)/(4) \) degrees.

To find the value of y, we can use the properties of the angles in the triangle ACD and the fact that AC = BD.

1. Angle Sum Property of a Triangle:


\[ \text{Angle CAD} + \text{Angle ACD} + \text{Angle CDA} = 180^\circ \]


\[ 63^\circ + (3x + 45^\circ) + (y - 6^\circ) = 180^\circ \]

2. Simplify and Solve for x:


\[ 108^\circ + 3x + y - 6^\circ = 180^\circ \]


\[ 3x + y = 78^\circ \]

3. Exterior Angle Property:


\[ \text{Exterior Angle A} = \text{Angle CAD} + \text{Angle ACD} \]


\[ 7x - 7^\circ = 63^\circ + (3x + 45^\circ) \]

4. Simplify and Solve for x:


\[ 7x - 7^\circ = 108^\circ + 3x \]


\[ 4x = 115^\circ \]


\[ x = (115^\circ)/(4) \]

5. Substitute x back into the Equation from Step 2:


\[ 3 \left( (115^\circ)/(4) \right) + y = 78^\circ \]

6. Solve for y:


\[ (345^\circ)/(4) + y = 78^\circ \]


\[ y = 78^\circ - (345^\circ)/(4) \]


\[ y = (312^\circ)/(4) - (345^\circ)/(4) \]


\[ y = -(33^\circ)/(4) \]

So, the value of y is
\( -(33)/(4) \) degrees.

User C B J
by
2.8k points