161,853 views
15 votes
15 votes
Solve the following system of equations using either Gaussian elimination or a matrix. Write your answer as a point and explain how you would check your work:

2x - y + 4z = 33
x + 2y - 3z = -26
-5 x - 3y +5z = 23

User Shaheer
by
2.7k points

1 Answer

23 votes
23 votes

Answer:

x = 5, y = -11 and z = 3

As a point it is (5, -11, 3)

You can check your work by plugging these values into each of the three equations and seeing if they satisfy each equation

Explanation:

Using Gaussian elimination


Write a matrix with the coefficients and solutions

\begin{bmatrix}2&-1&4& | &33\\ 1&2&-3& |&-26\\ -5&-3&5&|&23\end{bmatrix}

Reduce matrix to row echelon form:

\begin{pmatrix}1\:&\:\cdots \:&\:b\:\\ 0\:&\ddots \:&\:\vdots \\ 0\:&\:0\:&\:1\end{pmatrix}

Steps


\begin{pmatrix}2&-1&4&33\\ 1&2&-3&-26\\ -5&-3&5&23\end{pmatrix}

Swap matrix rows
R_1\:\leftrightarrow \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 1&2&-3&-26\\ 2&-1&4&33\end{pmatrix}

Cancel leading coefficient in row
R_2 by performing
R_2\:\leftarrow \:R_2+(1)/(5)\cdot \:R_1


=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 2&-1&4&33\end{pmatrix}

Cancel leading coefficient in row
R_3 by performing
R_3\:\leftarrow \:R_3+(2)/(5)\cdot \:R_1


=\begin{pmatrix}-5&-3&5&23\\ 0&(7)/(5)&-2&-(107)/(5)\\ 0&-(11)/(5)&6&(211)/(5)\end{pmatrix}

Swap matrix rows:
R_2\:\leftrightarrow \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&(7)/(5)&-2&-(107)/(5)\end{pmatrix}

Cancel leading coefficient in row
R_3 by performing
R_3\:\leftarrow \:R_3+(7)/(11)\cdot \:R_2


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&(20)/(11)&(60)/(11)\end{pmatrix}

Multiply matrix row by constant:
\:R_3\:\leftarrow (11)/(20)\cdot \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&6&(211)/(5)\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
\:R_2\: by performing
R_2\:\leftarrow \:R_2-6\cdot \:R_3


=\begin{pmatrix}-5&-3&5&23\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
R_1 by performing
R_1\:\leftarrow \:R_1-5\cdot \:R_3


=\begin{pmatrix}-5&-3&0&8\\ 0&-(11)/(5)&0&(121)/(5)\\ 0&0&1&3\end{pmatrix}

Multiply matrix row by constant:
R_2\:\leftarrow \:-(5)/(11)\cdot \:R_2


=\begin{pmatrix}-5&-3&0&8\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

Cancel leading coefficient in row
R_1 by performing
R_1\:\leftarrow \:R_1+3\cdot \:R_2


\begin{pmatrix}-5&0&0&-25\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

Multiply matrix row by constant :
R_1\:\leftarrow \:-(1)/(5)\cdot \:R_1


=\begin{pmatrix}1&0&0&5\\ 0&1&0&-11\\ 0&0&1&3\end{pmatrix}

This means x = 5, y = -11 and z = 3

Other row transformation sequences are possible but as you long as you can get a matrix to row echelon form you can determine what the solution set is

User Francesco Dondi
by
2.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.