Answer:
Part 1) Option C. Same side interior angles
Part 2) Option A.
![(3x+4)+(2x+11)=180\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nsp4lgam8hk0e56c09ykxsgngth2va20zx.png)
Part 3) Option B.
![m<5=77\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/acyqt6itlnlvrw89kks8dcuqrks1nmtfdd.png)
Explanation:
Part 1) we know that
If p and q are parallel
then
m<3 and m<5 are consecutive interior angles or Same side interior angles
and
![m<3+m<5=180\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7xwbdnrautl9wgnzsye672xkebb8vlxznk.png)
Part 2) we know that
-----> by consecutive interior angles (supplementary angles)
we have that
![m<3=(3x+4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/b3xx1s7rxvatmobargocghripxj6iqvklb.png)
![m<5=(2x+11)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z6jjad9it6okd8fk1gh50o7dsappjzsfcw.png)
so
substitute
![(3x+4)+(2x+11)=180\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nsp4lgam8hk0e56c09ykxsgngth2va20zx.png)
Part 3) Find the measure of angle 5
we know that
![(3x+4)+(2x+11)=180\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nsp4lgam8hk0e56c09ykxsgngth2va20zx.png)
Solve for x
![5x+15\°=180\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hu1b59wft2zs571urcqsyn75v2sb6o622n.png)
![5x=180\°-15\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3zlhpoq8idjymsxvvodz8livnpqbnvbr4v.png)
![x=165\°/5\°=33\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/dtkgmx48ctfqeget8ub3rdnc5wgni3na6o.png)
![m<5=(2x+11)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z6jjad9it6okd8fk1gh50o7dsappjzsfcw.png)
substitute the value of x
![m<5=(2(33)+11)=77\°](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xflcds5sraaf19am8bomf87vs8cpr7h44g.png)