Solution-
Here,
x = number of years worked,
y = salary in dollars.
Tom is getting $75,000 of salary right now, so for this case,
x₁ = 0,
y₁ = 75000
Tom will be getting a salary of $83,000 after 4 years from now, so for this case,
x₂ = 4,
y₂ = 83000
1.
Rate of change of salary = slope of the line joining (x₁, y₁), ( x₂, y₂)
![Slope= (y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2019/formulas/mathematics/college/nqmvqtu8b1rdvqk8g04kz4f51n19gn8bqy.png)
![\Rightarrow Slope= (83000-75000)/(4-0)](https://img.qammunity.org/2019/formulas/mathematics/college/a61woa76d5i7lwvodz1darx4tpbe3jzhdj.png)
![\Rightarrow Slope=2000](https://img.qammunity.org/2019/formulas/mathematics/college/osod7c083c0hs1e08zam3onembcq8xmrkt.png)
∴ The salary increase per year is $2000.
2.
Equation of the line in slope-intercept formula,
![y-y_1=m(x-x_1)](https://img.qammunity.org/2019/formulas/mathematics/college/lob8zuuisy2ohheuctatxwwco4ukatcrj3.png)
Putting x₁ = 0, y₁ = 75000, we get
![y-75000=2000(x-0)](https://img.qammunity.org/2019/formulas/mathematics/college/sp9ngelqmm5kgqpyv98vf472nza3guyz74.png)
![y-75000=2000x](https://img.qammunity.org/2019/formulas/mathematics/college/aila1pz2hpypw0k5489ce97w3rgio922jo.png)
![y=75000+2000x](https://img.qammunity.org/2019/formulas/mathematics/college/4xhauryzelxjiwar6jdobdrmnrvvdhp75z.png)
3.
Putting x = 10, we can compute the value of y to get the salary after 10 years.
![y=75000+2000(10)](https://img.qammunity.org/2019/formulas/mathematics/college/hbahxg0tj4bu6mamk4k72j7w1wwk8k94zv.png)
![y=75000+20000](https://img.qammunity.org/2019/formulas/mathematics/college/phxay4i2ceqbcfweqptccom27i8wprdbts.png)
![y=95000](https://img.qammunity.org/2019/formulas/mathematics/college/ok4nj0w5rzlmqxxz8yi65snqisbdiam17i.png)
∴ Tom's salary in ten years will be $95,000