57.2k views
5 votes
Given: △DMN, DM=10 3 m∠M=75°, m∠N=45° Find: Perimeter of △DMN

User MeXx
by
6.4k points

1 Answer

4 votes

Answer:

The perimeter of
\triangle DMN will be 62.1939...

Explanation:

In
\triangle DMN, the length of side
DM = 10√(3) and the measures of
\angle M and
\angle N are 75° and 45° respectively.

As the sum of all angles in a triangle is always 180°, so the measure of
\angle D will be: 180°- (75°+45°) = 180°- 120° = 60°

Now using Sine rule, we will get......


(MN)/(Sin(D))=(DN)/(Sin(M))=(DM)/(Sin(N))\\ \\ (MN)/(Sin(60))=(DN)/(Sin(75))=(10√(3))/(Sin(45))\\ \\ MN= (10√(3))/(Sin(45))*Sin(60)=21.2132...\\ \\ DN=(10√(3))/(Sin(45))*Sin(75)=23.6602...

So, the perimeter of
\triangle DMN will be:
DM+MN+DN = 10√(3)+21.2132...+23.6602... =62.1939...

Given: △DMN, DM=10 3 m∠M=75°, m∠N=45° Find: Perimeter of △DMN-example-1
User Adam Yost
by
5.2k points