The roots of the equation are:
and
![x= 4-2i√(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/oh7m5ok78k1x0nu4qx83uyv7lmr6c9uax8.png)
Step-by-step explanation
Roots means the solutions or the values of x.
Given equation:
![(x^2)/(4) =2x-10](https://img.qammunity.org/2019/formulas/mathematics/high-school/x7f20k0o8sryr7lfol2q9hdtcqwyxjgrgp.png)
First multiplying both side by 4, we will get...
![x^2= 4(2x-10)\\ \\ x^2= 8x-40\\ \\ x^2-8x+40=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/2rir0vylg9b53q1igrrhwnie1yfabgq68m.png)
As the above equation is a quadratic equation in form of
, so
and
![c=40](https://img.qammunity.org/2019/formulas/mathematics/high-school/7arrsx5wk2osyuqul32i7m0lij5dnhuanj.png)
Using quadratic formula...
![x= (-b+/-√(b^2-4ac) )/(2a) \\ \\ x= (-(-8)+/-√((-8)^2 -4(1)(40)) )/(2(1))\\ \\ x= (8+/-√(64-160) )/(2)\\ \\ x= (8+/-√(-96) )/(2)\\ \\ x= (8+/-i√(96) )/(2)\\ \\ x= (8+/-4i√(6) )/(2)\\ \\ x= 4+/-2i√(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ydaym22lvdwcttxde3mc00ftz280i47pz7.png)
So, the roots of the equation are:
and
![x= 4-2i√(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/oh7m5ok78k1x0nu4qx83uyv7lmr6c9uax8.png)