61.5k views
4 votes
Given the points (2,k) (2,k) and (0,−6) (0,−6) , for which values of k would the distance between the points be 5 – √ 5

User Hommy
by
5.7k points

1 Answer

5 votes

The formula of a distance between two points:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

We have:


(2,\ k)\to x_1=2,\ y_1=k\\(0,\ -6)\to x_2=0,\ y_2=-6\\d=5-\sqrt5

Substitute:


√((0-2)^2+(-6-k)^2)=5-\sqrt5\\\\√((-2)^2+[-(6+k)]^2)=5-\sqrt5\\\\√(4+(6+k)^2)=5-\sqrt5\ \ \ \ \ |^2\\\\4+(6+k)^2=(5-\sqrt5)^2\ \ \ \ |use\ (a-b)^2=a^2-2ab+b^2


4+(6+k)^2=5^2-2\cdot5\cdot\sqrt5+(\sqrt5)^2\\\\4+(6+k)^2=25-10\sqrt5+5\ \ \ \ |-4\\\\(6+k)^2=26-10\sqrt5\to6+k=\pm√(26-10\sqrt5)\ \ \ \ |-6\\\\\boxed{k=-6-√(26-10\sqrt5)\ \vee\ k=-6+√(26-10\sqrt5)}

If
d=\sqrt5, then:


√(4+(6+k)^2)=\sqrt5\ \ \ \ |^2\\\\(√(4+(6+k)^2))^2=(\sqrt5)^2\\\\4+(6+k)^2=5\ \ \ \ |-4\\\\(6+k)^2=1\to 6+k=\pm\sqrt1\\\\6+k=\pm1\ \ \ \ |-6\\\\\boxed{k=-7\ \vee\ k=-5}