we are given
![((1+cot^2(\theta))*tan(\theta))/(sec^2(\theta)) =cot(\theta)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vttgt45mssfaz5gzcb0lxnql151gr8n9kp.png)
We will simplify left side and make it equal to right side
Left side:
![((1+cot^2(\theta))*tan(\theta))/(sec^2(\theta))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mapa40wrmgnps2l3mto9n6vaqzmjh8elbi.png)
we can use trigonometric identity
![1+cot^2(\theta)=csc^2(\theta)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rjct96fuiwh4w9oz8wv2agv6yt5vyfx8h9.png)
we can replace it
![((csc^2(\theta))*tan(\theta))/(sec^2(\theta))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8x6mpo01on8p2wad67r1ktfewq5g5keti6.png)
we know that
csc=1/sin and sec=1/cos
so, we can replace it
and we get
![(cos^2(\theta)tan(\theta))/(sin^2(\theta))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rphy3zdqtmxqpdp0j68kba1r3b832u0zzs.png)
now, we know that
tan =sin/cos
![(cos^2(\theta)*sin(\theta))/(sin^2(\theta)*cos(\theta))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vdpbhp8i8o9r43nu0ma1lc6u5ayz2uh109.png)
we can simplify it
and we get
![(cos(\theta))/(sin(\theta))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/e5ti97gaog0aw1cznpmc5ci4pwq8oe2ow2.png)
we can also write it as
![=cot(\theta)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2gvts8wfliu09c5313udjivdndqtrghbsb.png)
Right Side:
![cot(\theta)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/iv2dpssdt6s32dibkt6t2agpnx73xrhdq7.png)
we can see that
left side = right side
so,
......Answer