Answer:
![1)\ t(x)=-√(x)------------\ \ y\leq 0\\\\2)\ p(x)=\sqrt[3]{2-x}-------\ \ \text{All real numbers}\\\\3)\ w(x)=2+√(x)---------\ \ y\geq 2\\\\4)\ r(x)=-2+√(2-x)--------\ \ y\geq -2\\\\5)\ k(x)=2-√(x)----------\ \ y\leq 2\\\\6)\ v(x)=√(-x)---------\ \ y\geq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/6dsbn1iksvjp0gcrrh3rq6ksrzv26ekwen.png)
Explanation:
1)
![t(x)=-√(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mqork7317xzrvf7hpn32dg8vyqmh2fwkib.png)
We know that:
![√(x)\geq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/47fsim8i93g0bncg4iucmkemro54ozdjnn.png)
This means that:
![-√(x)\leq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/93tkgk0flr80oefprah4lgghscf26xdgyi.png)
( since when both side of the inequality is multiplied by a negative number then the sign of the inequality gets reversed )
This means that:
![t(x)\leq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/mhcv5b4vmret7mpyb6fiku7zd2r6rv8dxo.png)
Hence, the range is:
![y\leq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/qswn1pvt75p9xru5amr6r4hi7un5huo546.png)
2)
![p(x)=\sqrt[3]{2-x}](https://img.qammunity.org/2019/formulas/mathematics/high-school/gupu1asttjk1w54anc05b7ftcczu3k0hmq.png)
We know that cube root is defined for all the real numbers and also the range covers the whole of R
Hence, the range is: All real numbers.
3)
![w(x)=2+√(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/r5m0xgseguhzahromu3xgxhoo6edpv2m2p.png)
Again we know that:
![√(x)\geq 0\\\\i.e.\\\\2+√(x)\geq 2\\\\i.e.\\\\w(x)\geq 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/11do5n88p8ruey4cmya448ce6pewa9n552.png)
Hence, the range is:
![y\geq 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/v8v57vv12ixd82gjyclyh2udstutz9hz0u.png)
4)
![r(x)=-2+√(2-x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ejkfcb3afoqpo9hquwdbavuf4zq6bq0ggm.png)
we know that:
![√(x)\geq 0\\\\i.e.\\\\-2+√(x)\geq -2\\\\i.e.\\\\w(x)\geq -2](https://img.qammunity.org/2019/formulas/mathematics/high-school/9dpqchzxpf4ryh2y3caf449wsegfr272xw.png)
Hence, the range is:
![y\geq -2](https://img.qammunity.org/2019/formulas/mathematics/high-school/mlv1jrfk43gsr2c3v1krf3csdajl7e25zx.png)
5)
![k(x)=2-√(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/6dw7hwqa211zu898rzpivh8vh9b0rzohbm.png)
Since,
![√(x)\geq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/47fsim8i93g0bncg4iucmkemro54ozdjnn.png)
This means that:
![-√(x)\leq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/93tkgk0flr80oefprah4lgghscf26xdgyi.png)
so,
![-√(x)+2\leq 2\\\\i.e.\\\\2-√(x)\leq 2\\\\i.e.\\\\k(x)\leq 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/o1igsmm8chstnmrr1rwz5vbvuap5jkp90f.png)
Hence, the range is:
![y\leq 2](https://img.qammunity.org/2019/formulas/mathematics/high-school/p3xgw7zkj3ch1pj69o7izyk4s8qh01diod.png)
6)
![v(x)=√(-x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/fmqs81e6mihm8q77zssomam9gq60wom6mp.png)
We know that the square root of a number is always greater than or equal to zero.
so,
![√(-x)\geq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/9r3n15tg8lz9o5szlyuvcprju1dfpa99hn.png)
i.e.
The range is:
![y\geq 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/n1ij0hi5hlp4acwg6hlqmlznzk7qen2t0d.png)