We are given two points of a line
(-2, -2) and (1,4)
Equation of line:
Firstly , we will find slope
(-2, -2) and (1,4)
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/25uxp4sblay2143idvgkz738ukrk1vzo5g.png)
![m=(4+2)/(1+2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hts5129ybpdoa52486dsstf5t7q9zjmhcw.png)
![m=2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/un10bk5gmzp7dii2g20akdti1uy538j6rs.png)
now, we can find equation of line
![y-y_1=m(x-x_1)](https://img.qammunity.org/2019/formulas/mathematics/college/lob8zuuisy2ohheuctatxwwco4ukatcrj3.png)
now, we can plug values
and we get
![y+2=2(x+2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/eqwwmfqipzsy5qv9f5wpj25mow5dfxdf5p.png)
![2x-y+2=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/iml8csgugtao4uno345gsnz3txoquuwpj5.png)
Distance:
now, we can use distance formula
![d=(|ax_0+by_0+c|)/(√(a^2+b^2))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7fepvpxmrwyvnxznmsfmst6j3ynopuf290.png)
firstly , we will find a and b
a=2 and b=-1
point is (6,-1)
so, xo=6 and yo=-1
we can plug values
and we get
![d=(|2*6-1*-1+2|)/(√((2)^2+(-1)^2))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xolc3bqp5y80ef2eq8fy40psuko9pafps6.png)
![d=(15)/(√(5))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/14cmvqk0c13tcf70vu640rst71xagjlsbt.png)
...........Answer