205,141 views
32 votes
32 votes
Tommy do this instead then

Tommy do this instead then-example-1
User Manny Alvarado
by
2.9k points

1 Answer

25 votes
25 votes

Answer: (2) 1010025

Explanation:

Let's find the sum of 1+3+5+7+...+2007+2009

Let's use the formulas for an arithmetic progression:


a_1=1\ \ \ a+2=3\\d=a_2-a_1\\d=3-1\\d=2


a_1 =1\ \ \ \ a_n=2009\\a_n=a_1+(n-1)d\\\Rightarrow\ 2009=1+(n-1)2\\\Rightarrow \ 2009=1+2n-2\\\Rightarrow\ 2009=-1+2n\\\Rightarrow\ 2010=2n\\

Divide both parts of the equation by 2:


1005=n

Hence,


\displaystyle\\S=(a_1+a_n)/(2) n\\\\S=(1+2009)/(2)1005\\\\S=(2010)/(2) 1005\\\\S=1005*1005\\\\S=1010025

User BruceWayne
by
2.3k points